\qquad

C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name: Number Theory

Subject Code: 5SC04NUT1
Branch: M.Sc. (Mathematics)
Semester:4
Date: 20/10/2018
Time:10:30 To 01:30
Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I

Q-1 Attempt the following questions

a. Define: Greatest integer function with example.
b. Findgcd $(525,231)$.
c. Define: Prime number.
d. Define: Multiplicative function.
e. Congruence is an equivalent relation. (True/False)
f. Number a is said to be a perfect number if $\sigma(a)=2 a$. (True/False)
g. If k is any positive integer, then $k^{2}+k+1$ is a square number. (True/False)

Q-2 Attempt all questions

a. Prove that given any integers a and b, with $b>0$, there exist unique integers q and r satisfying $a=q b+r, 0 \leq r<b$.
b. In usual notations prove that, $a, b=a b$.
c. Prove that the function τ and σ are both multiplicative functions.

OR

Q-2 Attempt all questions

a. Prove that every positive integer greater than one can be express uniquely as a product of prime, up to the order of the factor.
b. If $2^{k}-1$ is prime $(k>1)$, then prove that $n=2^{k-1}\left(2^{k}-1\right)$ is perfect and every even perfect number is of the form.
c. Let $N=a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{m} 10^{m}$ be the decimal expansion of the positive integer $N, 0 \leq a_{k}<10$, and let $T=a_{0}-a_{1}+a_{2}-\cdots+(-1)^{m} a_{m}$. Then prove that $11 \mid N$ if and only if $11 \mid T$.
Q-3 Attempt all questions
a. Prove that Mobious function is multiplicative function.
b. State and prove Chinese remainder theorem.
c. Prove that if p is prime and $p / a b$, then p / a or p / b.
d. Prove that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+c(\bmod n)$ and $a c \equiv b c(\bmod n)$.

Attempt all questions

a. Solve: $6 x \equiv 15(\bmod 21)$.
b. Solve the system of congruences

$$
\begin{equation*}
x \equiv 5(\bmod 6), x \equiv 4(\bmod 11), x \equiv 3(\bmod 17) \tag{02}
\end{equation*}
$$

c. For integers a, b, c, if $c|a \& c| b$, then prove that $c \mid(m a+n b), \forall m, n \in \mathbb{Z}$.
d. Find highest power of 2 that divides 50 !.

SECTION - II

Q-4 Attempt the following questions

a. Define: Algebraic number.
b. Write Pell's equation.
c. Define: Primitive root.
d. Find $\phi(9)$.
e. State Fermat's Last Theorem.
f. The product of two primitive polynomial is primitive. (True/False)
g. Every Euclidean quadratic field has unique factorization property. (True/False)

Q-5 Attempt all questions

a. Prove that the integer p is prime if and only if $(p-1)!+1 \equiv 0(\bmod p)$.
b. Prove that the value of any infinite continued fraction is an irrational number.
c. Express the rational number $\frac{19}{51}$ in finite simple continue fraction.
d. Determine the infinite continued fraction representation of $\sqrt{7}$.

OR

Attempt all questions

a. Let n be a positive rational integer and ξ a complex number. Suppose that the complex numbers $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}$, not all zero, satisfy the equation

$$
\begin{equation*}
\xi \theta_{j}=a_{j, 1} \theta_{1}+a_{j, 2} \theta_{2}+a_{j, n} \theta_{n}, \quad j=1,2,3, \ldots \tag{05}
\end{equation*}
$$

where the n^{2} coefficients $a_{j, i}$ are rational. Then prove that ξ is an algebraic number. Moreover, if the $a_{j, i}$ are rational integers, ξ ia an algebraic integer.
b. Solve the linear Diophantine equation $18 x+5 y=54$.
c. If the integer a has order k modulo n, then prove that $a^{i} \equiv a^{j}(\bmod n)$ if and only if $i \equiv j(\bmod n)$.
d. If p, q is a positive solution of $x^{2}-d y^{2}=1$, then prove that $\frac{p}{q}$ is a convergent of the continued fraction expansion of \sqrt{d}.

Q-6 Attempt all questions
a. Prove that all the solutions of $x^{2}+y^{2}=z^{2}$ with $x, y, z>0$; satisfying the conditions $(x, y, z)=1,2 \mid x$ are given by the formula $x=2 s t, y=s^{2}-t^{2}, z=s^{2}+t^{2}$, wheres $>t>0,(s, t)=1$ and one of s, t is even and the other is odd.
b. Determine the infinite continued fraction representation of irrational number $\sqrt{23}$.
c. Compute the convergents of the simple continued fraction [1; 2,3,3,2,1].

OR

Q-6 Attempt all questions

a. Define: Norm $N(\alpha)$ in $Q(\sqrt{m})$. Prove that the norm of a product equals the product of the norms in $Q(\sqrt{m})$.
b. If $C_{k}=\frac{p_{k}}{q_{k}}$ is the $k^{t h}$ convergent of finite simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$, then prove that $p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k-1}, 1 \leq k \leq n$.
c. Prove that if a monic polynomial $f(x)$ with integral coefficients factors in to two monic polynomails with rational coefficients, say $f(x)=g(x) h(x)$, then $g(x)$ and $h(x)$ have integral coefficients.

