_____Exam Seat No: _____

C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name: Number Theory

Subject Code: 5SC04NUT1		Branch: M.Sc. (Mathematics)	
Semester:4	Date: 20/10/2018	Time:10:30 To 01:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the following questions	(07)
	a.	Define: Greatest integer function with example.	(01)
	b.	Findgcd(525, 231).	(01)
	c.	Define: Prime number.	(01)
	d.	Define: Multiplicative function.	(01)
	e.	Congruence is an equivalent relation. (True/False)	(01)
	f.	Number a is said to be a perfect number if $\sigma(a) = 2a$. (True/False)	(01)
	g.	If k is any positive integer, then $k^2 + k + 1$ is a square number. (True/False)	(01)
Q-2		Attempt all questions	(14)
	a.	Prove that given any integers a and b, with $b > 0$, there exist unique integers q and r satisfying $a = qb + r, 0 \le r < b$.	(05)
	b.	In usual notations prove that, $a, b = ab$.	(05)
		Prove that the function τ and σ are both multiplicative functions.	(04)
		OR	
Q-2		Attempt all questions	(14)
	a.	Prove that every positive integer greater than one can be express uniquely as a product of prime, up to the order of the factor.	(05)
	b.	If $2^k - 1$ is prime $(k > 1)$, then prove that $n = 2^{k-1}(2^k - 1)$ is perfect and every even perfect number is of the form.	(05)
	c.	Let $N = a_0 + a_1 10 + a_2 10^2 + \dots + a_m 10^m$ be the decimal expansion of the positive integer $N, 0 \le a_k < 10$, and let $T = a_0 - a_1 + a_2 - \dots + (-1)^m a_m$. Then prove that $11 N$ if and only if $11 T$.	(04)
Q-3		Attempt all questions	(14)
-	a.		(05)
	b.	State and prove Chinese remainder theorem.	(05)
	c.	Prove that if p is prime and p/ab , then p/a or p/b .	(02)
	d.	Prove that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$.	(02)

		OR	
Q-3		Attempt all questions	(14)
	a.	Solve: $6x \equiv 15 \pmod{21}$.	(05)
	b.	Solve the system of congruences	(05)
	•	$x \equiv 5 \pmod{6}, x \equiv 4 \pmod{11}, x \equiv 3 \pmod{17}$	(02)
	c. d.	For integers <i>a</i> , <i>b</i> , <i>c</i> , if $c a \& c b$, then prove that $c (ma + nb), \forall m, n \in \mathbb{Z}$. Find highest power of 2 that divides 50.	(02) (02)
	u.	Find highest power of 2 that divides50!. SECTION – II	(02)
Q-4		Attempt the following questions	(07)
c	a.	Define: Algebraic number.	(01)
	b.	Write Pell's equation.	(01)
	c.	Define: Primitive root.	(01)
	d.	Find $\phi(9)$.	(01)
	e. r	State Fermat's Last Theorem.	(01)
	f. g.	The product of two primitive polynomial is primitive. (True/False) Every Euclidean quadratic field has unique factorization property. (True/False)	(01) (01)
	9.		(0-)
Q-5		Attempt all questions	(14)
	a.	Prove that the integer p is prime if and only if $(p - 1)! + 1 \equiv 0 \pmod{p}$.	(05)
	b.	Prove that the value of any infinite continued fraction is an irrational number.	(05)
	c.	Express the rational number $\frac{19}{51}$ in finite simple continue fraction.	(02)
	d.	Determine the infinite continued fraction representation of $\sqrt{7}$.	(02)
0.5		OR	(1.1)
Q-5	0	Attempt all questions Let n be a positive rational integer and ξ a complex number. Suppose that the	(14) (05)
	a.	complex numbers $\theta_1, \theta_2, \theta_3, \dots, \theta_n$, not all zero, satisfy the equation	(03)
		$\xi \theta_j = a_{j,1} \theta_1 + a_{j,2} \theta_2 + a_{j,n} \theta_n, j = 1,2,3,$	
		where the n^2 coefficients $a_{j,i}$ are rational. Then prove that ξ is an algebraic	
		number. Moreover, if the $a_{j,i}$ are rational integers, ξ ia an algebraic integer.	
	b.	Solve the linear Diophantine equation $18 x + 5y = 54$.	(05)
	с.	If the integer <i>a</i> has order <i>k</i> modulo <i>n</i> , then prove that $a^i \equiv a^j \pmod{n}$ if and	(02)
		only if $i \equiv j \pmod{n}$.	
	d.	If p, q is a positive solution of $x^2 - dy^2 = 1$, then prove that $\frac{p}{q}$ is a convergent of	(02)
		the continued fraction expansion of \sqrt{d} .	
Q-6		Attempt all questions	(14)
C C	a.	Prove that all the solutions of $x^2 + y^2 = z^2$ with $x, y, z > 0$; satisfying the	(05)
		conditions $(x, y, z) = 1$, $2 x$ are given by the formula	
		$x = 2st, y = s^2 - t^2, z = s^2 + t^2$, where $s > t > 0$, $(s, t) = 1$ and one of s, t is	
	_	even and the other is odd.	
	b.	Determine the infinite continued fraction representation of irrational number $\sqrt{23}$.	(05)
	c.	Compute the convergents of the simple continued fraction [1; 2,3,3,2,1].	(04)
0.6		OR Attempt all questions	(14)
Q-6	9	Attempt all questions Define: Norm $N(\alpha)$ in $O(\sqrt{m})$. Prove that the norm of a product equals the	(14) (05)
	a.	Define: Norm $N(\alpha)$ in $Q(\sqrt{m})$. Prove that the norm of a product equals the product of the norms in $Q(\sqrt{m})$.	(03)
		product of the norms in $Q(\sqrt{m})$.	

- **b.** If $C_k = \frac{p_k}{q_k}$ is the k^{th} convergent of finite simple continued fraction (05) $[a_0; a_1, a_2, ..., a_n]$, then prove that $p_k q_{k-1} q_k p_{k-1} = (-1)^{k-1}, 1 \le k \le n$.
- c. Prove that if a monic polynomial f(x) with integral coefficients factors in to two (04) monic polynomials with rational coefficients, say f(x) = g(x)h(x), then g(x) and h(x) have integral coefficients.

